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Multigene analyses identify the three earliest lineages of extant
flowering plants
Christopher L. Parkinson, Keith L. Adams and Jeffrey D. Palmer

Flowering plants (angiosperms) are by far the largest,
most diverse, and most important group of land plants,
with over 250,000 species and a dominating presence in
most terrestrial ecosystems. Understanding the origin
and early diversification of angiosperms has posed a
longstanding botanical challenge [1]. Numerous
morphological and molecular systematic studies have
attempted to reconstruct the early history of this group,
identifying the root of the angiosperm tree. There is
considerable disagreement among these studies, with
various groups of putatively basal angiosperms from
the subclass Magnoliidae having been placed at the
root of the angiosperm tree (reviewed in [2–4]). We
investigated the early evolution of angiosperms by
conducting combined phylogenetic analyses of five
genes that represent all three plant genomes from a
broad sampling of angiosperms. Amborella, a
monotypic, vesselless dioecious shrub from New
Caledonia, was clearly identified as the first branch of
angiosperm evolution, followed by the Nymphaeales
(water lilies), and then a clade of woody vines
comprising Schisandraceae and Austrobaileyaceae.
These findings are remarkably congruent with those
from several concurrent molecular studies [5–7] and
have important implications for whether or not the first
angiosperms were woody and contained vessels, for
interpreting the evolution of other key characteristics of
basal angiosperms, and for understanding the timing
and pattern of angiosperm origin and diversification.
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Results and discussion
Our efforts to identify the earliest angiosperms empha-
sized mitochondrial genes, in order to capitalize on the
low rate of nucleotide substitutions in plant mitochondrial
genomes [8]. Most of the sequences for the three mito-
chondrial genes analyzed (mtSSU rDNA, cox1 and rps2)
were generated in this study, whereas sequences for the

chloroplast rbcL and nuclear SSU rDNA genes are largely
from GenBank. Forty-five diverse angiosperms, represent-
ing all major lineages of basal angiosperms, were included
in the study, with six gymnosperms used as outgroups for
comparison. Our sampling of angiosperms was based
largely on the 1997 study by Soltis et al. [9] and the 1998
review by Doyle [3]. Gnetales, thought on morphological
grounds to be the sister group of angiosperms [4], were not
included as outgroups because recent molecular studies
[7,10,11] indicate that they are instead gymnosperms with
high rates of sequence evolution.

Individual analyses of the five genes yielded relatively
poorly resolved trees; but importantly, the trees were not
visibly incongruent with one another (see Supplementary
material). Therefore, we deemed it both appropriate and
necessary, in order to obtain better resolved and supported
trees, to combine the five genes into a single, total molec-
ular evidence data set. This yielded an alignment of 51
taxa with 6564 characters, of which 2393 were variable and
1391 were informative for parsimony analysis. The data
were analyzed by maximum parsimony and maximum
likelihood, using three methods to assess internal branch
support (see Supplementary material).

The maximum-parsimony and maximum-likelihood
analyses revealed that Amborella trichopoda (the sole
member of the Amborellaceae) is the first branch of
angiosperm evolution (Figure 1). This placement was
strongly supported by both maximum-parsimony analyses
(89% bootstrap support and a decay value of 9 steps) and
maximum-likelihood analyses (94% bootstrap and 99%
relative likelihood support). Amborella is an evergreen,
dioecious shrub endemic to New Caledonia; it lacks
vessels and contains many distinctive characteristics that
are considered to be ancestral or erratic [12]. A mono-
phyletic Nymphaeales (water lilies and related aquatic
plants) was found to be the second branch of the
angiosperm tree, while the third lineage was found to
comprise Austrobaileyaceae and Schisandraceae (woody
vines), with both placements being highly supported
(Figure 1). Studies with more extensive taxonomic sam-
pling have shown that Illiciaceae and Trimeniaceae also
belong to the Austrobaileyaceae/Schisandraceae clade
[6,7,9,13]. 

Our placement of Amborella, Nymphaeales, and Austrobai-
leyaceae/Schisandraceae as the three earliest groups of
angiosperms does not appear to be an artifact of long
branch attraction (the tendency of relatively divergent
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branches in a phylogenetic tree to erroneously group
together to the exclusion of intervening short branches
due to excessive parallel and convergent changes on the
long branches) to the very long branch separating the
angiosperm ingroup from the gymnosperm outgroups.
The branches leading to these three angiosperm groups
are not notably long, and unrooted maximum-parsimony
and maximum-likelihood analyses — that is, with gym-
nosperms excluded — of the combined data set yielded

unrooted networks that were topologically equivalent to the
rooted trees of Figure 1 with respect to the placement of
Amborella, Nymphaeales, and Austrobaileyaceae/Schisan-
draceae relative to each other and to other angiosperms. In
addition, alternative topology testing using the maximum-
likelihood KH test [14] was performed to investigate
various hypotheses for the earliest branch of the
angiosperm tree. Placement of Amborella as the basal-most
member of Nymphaeales, or switching the position of
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Figure 1
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Amborella and Nymphaeales, was not statistically different
at the 5% level from the topology presented in Figure 1.
Significant differences were found, however, between the
best maximum-likelihood tree and topologies in which the
basal branch of angiosperms was designated as Austrobai-
leyaceae/Schisandraceae, the Magnoliales, Ceratophyllum,
or the monocots. Thus, the maximum-likelihood analyses
reject all angiosperms except for Amborella and/or
Nymphaeales as the earliest angiosperms. It should be
stressed that the KH test compares, for a particular data
set, log likelihood scores for the entirety of the best tree
with those of designated alternative topologies. Thus, a
single nearest-neighbor interchange (as with Amborella and
the Nymphaeales) might not cause a significant change in
the overall tree likelihood score, even if it disrupts a node
that is strongly supported by the bootstrap and other
support indices.

Several concurrent multigene studies [5–7] (S. Graham
and R. Olmstead, personal communication) have identi-
fied, with modest-to-high support, the same three basal
branches of angiosperm evolution as recovered in our
analyses (Figure 1). This remarkable confluence of con-
gruent results was foreshadowed, in one part or another, in
several earlier, mostly single-gene studies. Amborella was
the most basal in a subset of nuSSU rDNA trees in the
1997 study by Soltis et al. [9], while two 1993 rbcL studies
[15,16] first suggested that Amborella is closely related to
the Nymphaeales (but did not place it as the first branch-
ing angiosperm). The Nymphaeales were placed at the
base of the angiosperm tree in several early molecular
studies [2,17–20], although Amborella was not included in
any of them and support for the Nymphaeales placement
was not high. An early origin of Austrobaileyaceae and rel-
atives was first suggested by the 1997 nuSSU study of
Soltis et al. [9].

The complete agreement between our study and concur-
rent multigene studies [5–7] (S. Graham and R. Olmstead,
personal communication) as to the three basal lineages of
angiosperms gives us great confidence that the evolution-
ary root of flowering plants has finally been resolved.
Thus, other groups, such as Magnoliales, Ceratophyl-
laceae, and Chloranthaceae, which have previously been
considered as candidates for the earliest angiosperms
(reviewed in [2–4]), should no longer be regarded as such.
Relationships are poorly resolved among these latter three
groups and the five other, now clearly non-basal, groups in
our study. Of the five multiply sampled groups, four
(monocots, Laurales, Magnoliales, and eudicots) are well
supported as being monophyletic (monophyly of Piperales
is only weakly supported), but relationships among these
groups and the Chloranthaceae, Ceratophyllaceae, and
Winteraceae differ between maximum-parsimony and
maximum-likelihood analyses and are poorly supported.
Better sampling, of both taxa and genes, is evidently

needed to resolve these relationships (see for example
[6,7]). Relationships within monocots are well resolved,
with Acorus the most basal, as suggested in previous
studies (for example [6,15]). Relationships within eudicots
are generally consistent with other, more extensive studies
(for example [6,7,15,21]); clade support is high for some
groups but low for others.

Identification of the three earliest angiosperm groups pro-
vides the opportunity to infer features of the common
ancestor of extant angiosperms, and to reevaluate the evo-
lution of morphological, anatomical, and biochemical char-
acteristics in basal angiosperms. Amborella and the
Nymphaeales lack ethereal oil cells [22], and in all three
first-branching groups, closure of carpel margins occurs by
secretion [23–25]. Our phylogeny suggests that these traits
are ancestral among angiosperms. A long-standing issue is
whether the first angiosperms were woody or herbaceous.
Amborella is a woody shrub, and the Austrobaileyaceae and
Schisandraceae are both woody vines (the Illiciaceae and
Trimeniaceae are lianas and small trees), whereas the
Nymphaeales are herbaceous [22]. This suggests,
although not persuasively, that the common ancestor of
extant angiosperms was woody, with the Nymphaeales
being derived from a woody ancestor. Amborella appar-
ently lacks vessels [26,27], suggesting that the ancestral
angiosperm condition was vesselless. The very recent dis-
covery of vessels in some Nymphaeales ([28] and refer-
ences therein), however, emphasizes the importance of
reexamining Amborella. Our phylogeny suggests that the
flowers of the first branching angiosperms were neither
the small and very reduced flowers of the Piperales and
Chloranthaceae, nor the large multiparted flowers of the
Magnoliales (reviewed in [1,29]), but were more likely to
be intermediate between these extremes. Although some
Nymphaeales species have multiparted flowers, this has
been proposed to represent a derived condition [30].

Results from this study also have implications for the
timing and pattern of angiosperm origin and diversifica-
tion. The earliest unambiguously angiosperm fossils are
120–130 million years old [1,31], and, where assignable,
belong to groups that have been defined in our study as
non-basal, such as Magnoliales, Winteraceae, Chloran-
thaceae, monocots, and eudicots [1,32]. This suggests an
even earlier origin for Amborella, Nymphaeales, and the
Austrobaileyaceae group. If fossils documenting this early
period of angiosperm evolution are eventually recovered,
it will be interesting to see how deeply they cut into what
is now a very lengthy period (100–200 million years) of
stem-group evolution that connects extant angiosperms to
their sister group, either the extinct Bennettitales and Cay-
tonia and/or extant gymnosperms [3,10,11]. That
Amborella, the first branch of angiosperm evolution, is
monotypic, and that the next two groups are relatively
small (~160 species in total [22]), is consistent with the
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suggestion of Sanderson and Donoghue [33] that early
angiosperm evolution was not characterized by the high
diversification rates found in many groups of latter-day
angiosperms, although massive extinction within these
early lineages cannot be ruled out either.

Supplementary material
Supplementary material, including a complete list of plant names, DNA
voucher information, GenBank accession numbers for the sequences
used in this study, and all molecular and phylogenetic methodology, is
available at http://current-biology.com/supmat/supmatin.htm.
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